1.    Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals. Vallone F, Ottaviani MM, Dedola F, Cutrone A, Romeni S, Panarese AM, Bernini F, Cracchiolo M, Strauss I, Gabisonia K, Gorgodze N, Mazzoni A, Recchia FA, Micera S. J Neural Eng. 2021 Jul 7;18(4). doi: 10.1088/1741-2552/ac0d42M

2.    Cracchiolo M, Ottaviani MM, Panarese A, Strauss I, Vallone F, Mazzoni A, Micera S. Bioelectronic medicine for the autonomic nervous system: clinical applications and perspectives. J Neural Eng. 2021 Mar 17;18(4). doi: 10.1088/1741-2552/abe6b9

3.    Redolfi Riva E, Micera S. Progress and challenges of implantable neural interfaces based on nature-derived materials. Bioelectron Med. 2021 Apr 27;7(1):6. doi: 10.1186/s42234-021-00067-7.

4.    D. Ferraro et al., “Implantable Fiber Bragg Grating Sensor for Continuous Heart Activity Monitoring: Ex-Vivo and In-Vivo Validation,” in IEEE Sensors Journal, vol. 21, no. 13, pp. 14051-14059, July1, 2021, doi: 10.1109/JSEN.2021.3056530

5.    Regnacq L, Wu Y, Neshatvar N, Jiang D, Demosthenous A. A Goertzel Filter Based System for Fast Simultaneous Multi-Frequency EIS. IEEE Trans Circ Syst II. 2021. doi: 10.1109/TCSII.2021.3092069

6.    Haberbusch M, De Luca D, Moscato F. Changes in Resting and Exercise Hemodynamics Early After Heart Transplantation: A Simulation Perspective. Front Physiol. 2020 Nov 6;11:579449. doi: 10.3389/fphys.2020.57944

7.    Lo Presti et al. Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review.  IEEE Access, vol. 8, pp. 156863-156888, 2020, doi: 10.1109/ACCESS.2020.3019138.

8.    Cutrone A, Micera S. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Adv Healthc Mater. 2019 Dec;8(24):e1801345. doi: 10.1002/adhm.201801345

9.    Zamani M, Sokolic J, Jiang D, Renna F, Rodrigues MRD, Demosthenous A. Accurate, Very Low Computational Complexity Spike Sorting Using Unsupervised Matched Subspace Learning. IEEE Trans Biomed Circuits Syst. 2020 Apr;14(2):221-231. doi: 10.1109/TBCAS.2020.2969910

10.    Wu Y, Jiang D, Habibollahi M, Almarri N, Demosthenous A. Time Stamp – A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications. IEEE Trans Biomed Circuits Syst. 2020 Oct;14(5):997-1007. doi: 10.1109/TBCAS.2020.3012057

11.    Schormans M, Jiang D, Valente V, Demosthenous A. Short-Range Quality-Factor Modulation (SQuirM) for Low Power High Speed Inductive Data Transfer. IEEE Trans Circ Syst I. 2019 Sept;66(9):3254-3265. Doi: 10.1109/TCSI.2019.2922124

CONFERENCE ABSTRACTS/PAPERS

1.    Strauss, I., De Luca, D., Panarese A. M., et al. (2021). “A Software Tool for the Real-Time in Vivo Evaluation of Neural Electrodes’ Selectivity” 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-6, 2021, doi: 10.1109/NER49283.2021.9441334

2.    Strauss, I., Zinno, C., Giannotti, A., Ottaviani, M., et al. (2021). “Adaptation and Optimization of an Intraneural Electrode to Interface with the Cervical Vagus Nerve” 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-6, 2021, doi: 10.1109/NER49283.2021.9441131

3.    D. De Luca*,I. Strauss,S. Micera (2021) “A Software Tool for Assessing Autonomic Functions During Thoracic Vagus Nerve Stimulation”, 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-6, 2021

4.    Giannotti A., Strauss I., Musco S., Recchia F., Del Popolo G., Micera S., (2021) Pudendal “Nerve Stimulation to Restore Bladder Fullness Perception”, 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-6, 2021

5.    Wu Y, Jiang D, Neshatvar N, Demosthenous A, “A Power Efficient Time-to-Current Stimulator for Vagal-Cardiac Connection after Heart Transplantation”, IEEE International Symposium on Circuits and Systems (ISCAS), 2021

6.    Habibollahi M, Hanzaee FF, Jiang D, Lancashire H, Demosthenous A, “An Active Microchannel Neural Interface with Artifact Reduction”, IEEE International Symposium on Circuits and Systems (ISCAS), 2021

7.    Lancashire HT, Habibollahi M, Jiang D, Demosthenous A, “Evaluation of Commercial Connectors for Active Neural Implants”, 10th International IEEE EMBS Conference on Neural Engineering (NER), 2021

8.    Haberbusch, M., Moscato, F., “A model-based analysis of the relationship between cardiac autonomic markers and cardiac reinnervation in heart transplant patients”, Online 16th YSA PhD Symposium (2021).

9.    Neshatvar N, Regnacq L, Jiang D, Wu Y, Demosthenous A, “Monitoring Myocardial Edema Tissue with Electrical Impedance Spectroscopy,” 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1-4

10.    Wu Y, Jiang D, Neshatvar N, Hanzaee FF, Demosthenous A, “Towards a Universal Methodology for Performance Evaluation of Electrical Impedance Tomography Systems using Full Reference SNR,” 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1-5

11.    Abstract on the preliminary results of our numerical VNS model that we presented at the 18th Nordic Baltic Conference on Biomedical Engineering and Medical Physics: “Towards Vagus Nerve Stimulation to Restore Heart Rate Control in Heart Transplant Patients: A Simulation Study”

12.    Abstract on the hemodynamic model that was included in the proceedings of the 8th European Medical and Biological Engineering Conference 2020 (it was not orally presented since the conference was canceled on short notice due to the pandemic): “Preliminary Results of a Numerical Model to Predict Heart Rate Variability Changes Following Cardiac Denervation and Later Reinnervation in Heart Transplant Patients”

13.    Joseph Tharayil, Esra Neufeld, Antonino Cassara and Niels Kuster, Insights From Applying the Reciprocity Theorem to Compute the Compound Action Potential (CAP) in Complex Nerves Models, Abstract Collection of the 22nd Meeting of the Swiss Society for Neuroscience (SSN) 2020, Bern CH, February 22, 2020

14.    J. J. Tharayil, E. Neufeld, A. Cassara, and N. Kuster, “Insights from applying the reciprocity theorem to compute the compound action potential (CAP) in complex nerves models,” Abstract Collection of the Joint Annual Meeting of the Bioelectromagnetics Society and the European BioElectromagnetics Association (BioEM 2020), June 2020. pp. 9–12, 2020

15.    M. N. Polatoglu, A. M. Cassara, E. Neufeld, B. Lloyd, and N. Kuster, “Development and optimization of image-based neurostimulation modelling for bioelectronic medicine,” Abstract Collection of the Joint Annual Meeting of the Bioelectromagnetics Society and the European BioElectromagnetics Association (BioEM 2020), June 2020. pp. 270–273, 2020

16.    Joseph Tharayil, Esra Neufeld, Antonino Cassara, and Niels Kuster, Insights From Applying the Reciprocity Theorem to Compute the Compound Action Potential (CAP) in Complex Nerves Models, Abstract Collection of the FENS Virtual Forum 2020, Glasgow UK, 11–15 July, 2020

17.    N. Neshatvar, L. Regnacq, D. Jiang, Y. Wu and A. Demosthenous, “Monitoring Myocardial Edema Tissue with Electrical Impedance Spectroscopy,” 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Oct. 2020, doi: 10.1109/ISCAS45731.2020.9180610.

18.    Haberbusch, M., Frullini, S., Moscato, F., “Towards Vagus Nerve Stimulation to Restore Heart Rate Control in Heart Transplant Patients: A Simulation Study”, Conference: 18th Nordic Baltic Conference on Biomedical Engineering and Medical Physics (2020).

19.    Haberbusch, M., Moscato, F., “Preliminary Results of a Numerical Model to Predict Heart Rate Variability Changes Following Cardiac Denervation and Later Reinnervation in Heart Transplant Patients”, 8th European Medical and Biological Engineering Conference (2020)

20.    I. Gupta et al., “Quantification of clinically applicable stimulation parameters for precision near-organ neuromodulation of human splenic nerves,” Commun. Biol., vol. 3, p. 577, Oct. 2020, doi: 10.1038/s42003-020-01299-0.

21.    Experimental Biology 2020 SPARC’s Open Online Simulation Platform for Computational Modeling of the ANS’s Physiological Role and its Modulation by Electroceutical Devices: o2S2PARC Esra Neufeld, Nicolas Chavannes, Katie Zhi Zhuang, Antonino Cassarà, Bryn Lloyd, Pedro Crespo-Valero, Manuel Guidon, Odei Maiz, Sylvain Anderegg, Ignacio Pascual, Wolfgang Kainz, and Niels Kuster